Высокоскоростные железнодорожные магистрали*

Важнейшие характеристики, технические решения и перспективы развития

По материалам VII Международного конгресса по высокоскоростному железнодорожному движению

И.П. Киселёв, профессор кафедры «Управление и технология строительства» Петербургского государственного университета путей сообщения

Транспорт на магнитном подвешивании: прогресс или исторический тупик?

Важной задачей мировых конгрессов, подобных состоявшемуся в Пекине, является оценка стратегических перспектив высокоскоростных сухопутных видов транспорта. На всех предыдущих конгрессах, помимо вопросов развития высокоскоростных железнодорожных дорог классического типа, неизменно рассматривались вопросы, связанные с принципиально новым видом транспорта — транспортом на магнитном подвешивании, называемым еще магнитолевитирующим или маглев-транспортом (от магнит + левитация**).

Конгресс в Пекине стал первой международной встречей столь высокого уровня, на которой вообще не затрагивалась проблематика магнитолевитирующего транспорта. К ней не обращались ни в докладах на пленарных или секционных заседаниях, ни в дискуссиях экспертов за круглым столом. О маглев-транспорте не упоминалось и в специальных изданиях, подготовленных к конгрессу МСЖД и Министерством железных дорог КНР.

Технология высокоскоростного транспорта на магнитном подвешивании, еще несколько лет назад считавшись многообещающей, не была включена в круг проблем, обсуждавшихся на конгрессе. Из этого можно сделать важный вывод о том, что перспектива массового использования транспорта на магнитном подвешивании в настоящее время представляется весьма отдаленной. При этом то в одной, то в другой стране, в том числе и в России, выдвигаются предложения по рассмотрению подобных проектов. Например, в июле 2010 г. компания International Maglevboard представила проект создания сверхскоростной линии Москва — Берлин протяженностью 1800 км для поездов на магнитном подвешивании. В Санкт-Петербурге предложен проект строительства маглев-линии Санкт-Петербург — Павловск.

Существует определенная опасность того, что не проверенные практикой, нередкие технологические решения могут в силу ряда причин, в том числе экономических и политических, быть интересны определенным общественным кругам или корпоративным образованиям, в результате чего такие решения с помощью СМИ будут преподноситься широкой общественности как чрезвычайно перспективные. На начальном этапе внедрения той или иной технической идеи, новой технологии бывает очень трудно отличить перспективные...
Французский опытный аэро поезд, установленный в 1974 г. рекорд скорости 417,6 км/ч

До недавнего времени исследователи постоянно возвращаются к вопросу о безопасности движения. Но лишь в последние годы наблюдается некоторое улучшение ситуации.

В 1990-е гг. в нескольких странах было организовано тестирование новых систем магнитного подвесивания. В некоторых из них привлекательность такой технологии заключалась в возможности ускорения поездов на значительные расстояния. Однако, несмотря на это, сегодня многие страны продолжают использовать традиционные системы для обеспечения безопасности.

Однако, в 1999 г. японский аэротrain установленный в Италии, впервые превысил скорость 417,6 км/ч. Это было достигнуто благодаря использованию магнитных сил, которые позволяют поездам двигаться без соприкосновения с рельсами.

В 2000 г. еще больше улучшились результаты. Итальянский поезд TGV, использовавший магнитное подвесивание, достиг скорости 492 км/ч.

В 2005 г. японский поезд MLX01 установил новый рекорд скорости 575 км/ч.

Важно отметить, что магнитное подвесивание позволяет сократить время движения, уменьшить выбросы вредных веществ и снизить уровень шума.

Выводы: магнитное подвесивание является перспективным направлением в области железнодорожного транспорта. Однако, его广泛应用 требует дальнейшего исследования и разработки.
Высокоскоростные железнодорожные магистрали

В 1980—1990-х гг. ряд ученых вузов совместно с коллегами из Московского института инженеров железнодорожного транспорта, Всесоюзного научно-исследовательского института железнодорожного транспорта, Всесоюзного научно-исследовательского и проектно-конструкторского института электровозостроения и других организаций принимал активное участие в реализации таких проектов в СССР. Эти работы прекратились из-за экономического кризиса в стране на рубеже веков. Тем не менее имеющийся материал и квалификация ученых вуза позволяют адекватно оценить состояние научных и инженерных разработок в данной области в мире.

В 2002 г. по заданию МПС РФ, а в 2006—2007 гг. — Минтранса РФ группой ученых ПГУПСа при участии автора статьи было проведено технико-экономическое сравнение эффективности использования в транспортных коридорах протяженностью до 800 км ВСМ классического типа и транспортных систем на магнитном подвижении. Был подтвержден вывод о том, что на нынешнем уровне развития маглев-транспорт многократно прецедировал ВСМ по необходимым капитальнымиложениям в строительство, не дает существенного улучшения предоставляемой транспортной услуги. Скорее всего, в ближайшие десятилетия он может быть использован с коммерческой выгодой только на коротких маршрутах (порядка 10—30 км) при пассажиропотоке более 40—50 млн. чел. в год, например на территории очень больших выставочных комплексов или для связи крупнейших аэропортов с городами.

В настоящее время единственным осуществленным проектом маглев-транспорта является введенная в действие в 2003 г. 30-километровая линия для поездов на магнитном подвижении, соединившая станцию шанхайского метро Лонгьянг Роуд с международным аэропортом Пудонг. Автору представлялся случай ознакомиться с ее работой, побеседовать с экспертами и руководством линии. До сего дня она считается диспетчирование (так значится в выведенных перед входом правилах для посетителей) и находящейся в опытной эксплуатации. Перевозка пассажиров начинается ежедневно в 7 ч утра, а последний поезд отправляется в 21 ч 40 мин, несмотря на то, что аэропорт работает практически круглосуточно, а метеопресс — до 1 ч ночи. Естественно, такие временные рамки снижают востребованность поездов на магнитном подвижении. При осмотре шанхайской маглев-линии автора поразило очень малое число пассажиров. Поезда отправлялись практически пустыми.

С максимальной скоростью 430 км/ч поезд на магнитном подвижении движется в течение 1 ч 40 мин утром и столько же в вечерние часы. В остальное время скорость движения не превышает 300 км/ч, причем это постоянный график работы, а не временное ограничение скорости. Информация о столь существенном снижении скорости маглев-поездов не содержится в рекламных проспектах, распространяемых в аэропорту и гостиницах Шанхая. Сведения об этом автор не обнаружил и в многочисленных статьях о шанхайском маглеве, причем ему доводилось читать. Таким образом, максимальная скорость маглев-линии, преосваивающая показатели рельсовых ВСМ, на деле реализуется лишь в течение чуть более трех часов работы в сути. В остальное время скорость движения даже меньше, чем на ряда эксплуатируемых ВСМ. Плата за проезд не зависит от скорости движения поезда и составляет 50 юаней в один конец и 80 юаней при покупке билета туда и обратно. Для сравнения: проезд на такси из аэропорта Пудонг в центр Шанхая стоит около 100 юаней, а проезд по самому длинному маршруту городского метрополитена — 4 юаня (один юань равняется примерно пяти рублям).

Из бесед с рядом экспертов автору удалось выяснить, что уменьшение скорости позволяет экономить электроэнергию при движении поездов, имеющих, как правило, небольшую загрузку. При постоянной максимальной скорости движения значительно выше расходы на периодически проводимую регулировку положения путевых устройств, которое изменяется в результате динамических воздействий (хотя и опосредованно — магнитным полем) эквипажа на путь.

Двухпутная линия шанхайского маглев-транспорта используется в самом простом с точки зрения эксплуатационных моделей чеолчном режиме: каждый из двух поездов движется между конечными станциями туда и обратно по свое-
му пути. При длине линии в 30 км это позволяет обеспечить интервал отправления 15—20 мин, при этом нет необходимости использовать стрелочные переводы на станциях. Как известно, стрелочные переводы маглевов приводятся в действие лишь в том случае — в перепрощении состава — путем его постановки на пути отправления, как на конечных станциях метрополитенов. Это потребует постоянной интенсивной работы стрелочных переводов, что, по мнению экспертов, является серьезной проблемой в плане обеспечения надежности всей системы. Возможно устройство на конечных станциях разводных перегонов, но это приведет к дополнительным расходам при строительстве, однако не исключает полностью необходимость в стрелочных переводах.

Первоначально при строительстве маглев-линии в Шанхае сообщалось, что 30-километровый участок представляет собой начальное звено будущей магистрали. В марте 2006 г. было объявлено о сооружении к 2010 г. (к открытию выставки «Экспо-2010» в Шанхае) продолжения маглев-линии через центр Шанхая и Южный железнодорожный вокзал в город Ханчжоу с ответвлением ко второму международному аэропорту Шанхая Хонгъю. Стоимость сооружения маглев-линии проектной протяженностью 199,4 км была оценена в 22 млрд. юаней ($3,14 млрд.). В дальнейшем начало строительной укранеленной линии было отложено. Широкое общественное обсуждение проекта выявило отрицательное отношение к нему населения в связи с опасениями негативного воздействия на людей электромагнитных полей. Высказывались предложения продолжить городскую часть линии в тоннеле. В марте 2010 г. руководитель планового департамента Министерства железных дорог КНР Женг Дзян официально подтвердил намерение министерства построить эту линию в 2010—2014 гг. Однако к концу 2010 г. строительство так и не началось. Более того, в беседе на конгрессе с автором этих строк господин Женг Дзян весьма категорично заявил, что проект продолжения маглев-линии вообще отменен (именно отменен, а не отложен).

Вопрос о строительстве маглев-линии между Шанхаем и городом Ханчжоу становится еще более запутанным в свете информации о том, что 26 октября 2010 г. была введена в эксплуатацию ВСМ Шанхай — Ханчжоу протяженностью 202 км, рассчитанная на движение со скоростью до 350 км/ч. Конечно, при наличии у Министерства железных дорог КНР средств строительство параллельно действующей ВСМ новой маглев-линии можно рассматривать как большой эксперимент по созданию принципиально новой транспортной системы. Но пока информация о начале строительства нет.

На фоне неопределенности с развитием маглев-транспорта в Китае не внушается веры в близкое перспективы транспорта на магнитном подвешивании и информация из Японии. Еще в середине 1980-х гг. Министерство транспорта Японии и Центральная японская железнодорожная компания (ЯЖЖК) приняли решение о строительстве в ближайшие 15—20 лет магистралей для движения поездов на магнитном подвешивании по маршруту Токио — Нагоя — Осака. Трассу было намечено проложить через горы, что делало ее более прямой и короткой, чем существующая ВСМ «Токайдо», проходящая между городами Токио и Нагоя вдоль океанского побережья. Будущая магистраль для поездов на магнитном подвешивании получила название «Тюо» (в переводе с японского — центральная). В 1996 г. в префектуре Яманаси на трассе будущей магистрали был сооружен опытный участок длиной 18,4 км.

Однако принятые ЦЯЖК в течение последних двух десятилетий
меры по модернизации «Токайдо Синкансэн» и ввод в эксплуатацию нового подвижного состава позво- лили увеличить скорость и частоту следования поездов между Токио и Осакой. Это несколько сгладило остроту транспортной проблемы в данном регионе. Строительство магистрали «Тюо» было отложе- но. Сначала намечалось к 2005 г. принять решение о том, что будет сооружаться — классическая высокоскоростная железная дорога или же линия для поездов на магнит- ном подвешивании, затем вопрос был отложен на неопределенное время. В печати появилось сообще- ние, что по трассе «Тюо» может быть проложена высокоскоростная железная дорога классического типа, рассчитанная на максимальную скорость 350—380 км/ч. Тем не менее исследование в области маглев-транспорта продолжалось при поддержке правительства страны и ЦЯЖК. Проведенные в середине первого десятилетия XXI века расчеты показывают, что про- блема транспортного обеспечения в этом регионе страны обострится к 2025—2030 г. Однако до сего дня японские ученые, инженеры и ру- ководители транспорта так и не пришли к окончательному выводу о целесообразности и безопаснос- ти создания международных магнитолевитирующих транспортных систем.

В целях продолжения экспе- риментов в обстановке, прибли- женной к реальной эксплуатации, ЦЯЖК заказала в октябре 2010 г. 14 вагонов на магнитном подвешивании для поездов с конструк- ционной скоростью 500 км/ч, получивших обозначение L0, т.е. linear zero-emission — линейный [двигател] с нулевым выбросом [вредных веществ]. Поезд создается на основе вагонов как уже испытанного магнитолевитирующего поезда MLX01, так и высокоскоростного железнодорожного поезда серии 700, используемого на «Токайдо Синкансэн». Кузова у вагонов нового маглев-поезда будут несколько меньше по ширине, чем у тех, с которыми в настоящее время проводятся эксперименты. В салоне в ряд будут размещены четыре кресла (по схеме 2+2). Первые пять вагонов должны быть го- товы к концу 2013 г. Всего заказано четыре концевых вагона и 10 про- межуточных, что позволит компо- новать составы разной длины для проведения различных испыта- ний. Наряду с этим планируется до 2013 г. увеличить длину испытатель- ного полигона с 18,4 до 42,8 км, что будет способствовать осу- ществлению широкой программы разнообразных экспериментов по организации движения нескольких поездов одновременно и позволит имитировать эксплуатацию поездов по расписанию. В средствах массовой информации сообщало, что даже при благоприятном для проекта развитии событий со- оружение магнитолевитирующей магистрали «Тюо» может быть осу- ществлено не ранее 2027 г.

Анализ публикаций и мне- ний ведущих экспертов в области высокоскоростного сухопутного транспорта позволяет сделать вы- вод, что основными факторами, препятствующими коммерческому внедрению маглев-систем, явля- ются значительно более высокий уровень капитальных вложений и, по всей видимости, большие эксклуатационные расходы по сравнению с ВСМ классического типа. При этом за последние 10—15 лет в связи с увеличением коммерче- ской скорости поездов ВСМ существенно сократилась разница между их временем в пути и временем в пути, которое смогут обеспечить на том же направлении маглев-поэ- зда. Качества услуги этих двух видов транспорта на дистанциях поряд- ка 400—800 км становится близки друг другу при значительно боль- ших, как уже отмечалось, затратах на строительство маглев-магист- ралей, абсолютно несовместимых с существующей сетью железных дорог.

г. САНКТ-ПЕТЕРБУРГ

Литература

