Участники VII Всемирного конгресса по высокоскоростному железнодорожному движению, который прошел в декабре прошлого года в Пекине, смогли убедиться, что Китай за последние несколько лет сумел выйти в мировые лидеры в области строительства высокоскоростных магистралей. В основе феноменального успеха КНР лежит двухсторонний подход, предполагающий восприятие мирового опыта и развитие собственной научной и инженерной базы.

Думается, что для многих специалистов, следящих за развитием высокоскоростного железнодорожного транспорта в мире, в том числе и для участников предыдущего конгресса в Амстердаме в 2008 г., был неожиданностью прогресс КНР в области высокоскоростных железнодорожных дорог (предназначенных для движения со скоростью более 250 км/ч). Два года назад общая длина высокоскоростных магистралей (ВСМ) в Китае составляла менее 1000 км, а к концу 2010 г. их было построено около 5 тыс. (при том что продолжительность всех ВСМ в мире — 14 тыс. км). Из вновь построенных в КНР высокоскоростных линий 2154 км относятся к магистралям, предназначенным для движения самых быстрых в мире поездов со скоростью до 350 км/ч. Общая длина вновь построенных и реконструированных для высокоскоростного движения железнодорожных дорог в КНР составляет 7531 км.

Доклад министра железных дорог КНР Ли Жэйдуня и выступления других высокопоставленных руководителей китайской железнодорожной отрасли были всесторонне представлены масштабная картина работ по научному и инженерному обеспечению программы создания ВСМ, проектированию и строительству высокоскоростных магистралей в Китае.

Задача государственной важности
Прогресс в развитии китайской экономики в последние два десятилетия сопровождается как пространственным расширением, так и уплотнением «хозяйственной ткани» [1]. Этот процесс приводит к территориальной структуре экономик китайским особенностью ярко проявляется в росте сети железных дорог, темпы которого за период 1988–2002 гг. стали самыми высокими в мире. В ближайшие десятилетия сеть железных дорог Китая по своей продолжительности обогнит российскую и станет второй в мире после США.

Тем не менее бурное развитие поезденности населения привело к обострению проблемы транспортного обеспечения. Для КНР она усугублялась тем, что большинство населения и производительных сил сосредоточены на юго-востоке страны, а основные запасы полезных ископаемых находятся на малосвоенных западных территориях.

В 2003 г. при разработке 11-го пятилетнего плана на 2006–2010 гг. Центральный комитет Коммунистической партии Китая поставил стратегическую задачу ликвидации отставания транспортной отрасли. Развитие железнодорожных дорог в глубине страны, не очень богатой запасами углеводородного топлива — нефти и газа, было признано приоритетным в сравнении с развитием авиации и автомобильного транспорта. Принята среднесрочно-дальносрочная программа, помимо строительства новых линий ВСМ параллельно основным действующим железнодорожным магистралям. При этом усеченияющиеся дороги реконструируются, усиливаются и будущи предназначены преимущественно для тяжеловесных грузовых поездов с повышенной нагрузкой до 25 тс на ось. К 2020 г. планируется увеличить общую эксплуатационную длину железнодорожной сети страны до 100 тыс. км (71,8 тыс. км в 2002 г.), построить при этом около 12 тыс. новых ВСМ.

Таким образом, в зоне ВСМ окажется весь городской Китай, а население более 500 тыс. человек, что позволит значительно сократить объемы перевозок автомобилями и авиационным транспортом. Создание сети ВСМ полностью решает задачу экономии энергоресурсов и перевода транспорта КНР в категорию «зеленого — экологически чистого», неоднократно подчеркиваем на пикском форуме представители правительственных структур Китая.

Научная база
Развитие высокоскоростного железнодорожного транспорта в КНР опирается на общирную программу научных исследований и опытно-конструкторских разработок, которую представили выступивший с докладом во время президента Академии наук КНР (член-корреспондент Российской Академии наук) Бай Чун и другие докладчики. Программа, осуществляется Министерством железных дорог КНР совместно с Академией наук, другими организациями и ведомствами.
Адаптация мирового опыта

Выступления китайских руководителей на конгрессе и материалы выставки «Современные железные дороги 2010 года» дали представление о нынешних возможностях КНР в области собственного производства всего арсенала технических изделий и продуктов, необходимых для прокладки, строительства, оснащения и эксплуатации ВСМ.

Китайские железнодорожники в определенной степени повторили путь японских специалистов, пройденный в 50-х — начала 60-х годов прошлого века при создании первой ВСМ Токио — Осака. Тогда японские ученые и инженеры железнодорожники проявили большую активность, действуя в рамках международных железнодорожных конгрессов, конференций, выставок, тщательно изучая и анализируя передовой мировой опыт в области высоких скоростей движения на железных дорогах. Параллельно они создавали собственные образцы техники на основе широкого комплекса исследований и сертификации по национальным стандартам, пользуясь приобретенными по лицензиям удачными зарубежными изделиями.

В нехайской степени этим достижением было способствовано то, что в распоряжении китайских ученых и инженеров находилось передовое экспериментальное...
нное и научное оборудование. В частности, в ФРГ была закуплена современная опытная катковая станция — такая же, как та, что использовалась в Германии при создании высокоскоростных поездов ICE.

Хотя ни первый, ни второй поезд, разработанные в КНР, не производились серийно и не эксплуатировались на регулярной коммерческой основе, они стали важными компонентами научной и опытно-конструкторской базы по созданию высокоскоростного подвижного состава и скоростных испытаний устройств пути, электроснабжения, системы автоматики, телемеханики и связи. Китай приобретает цененный опыт и сформирован обширную команду специалистов, способных совместно со всемирно известными компаниями работать над созданием серийных образцов высокоскоростного подвижного состава поездов CRH1 (аббревиатура от англ. China Railway High speed — «Китайская высокая скорость на железных дорогах», первая модель), CRH2, CRH3, а также другой железнодорожной техники.

Китайские руководители — железнодорожники поступают как мудрые и дальновидные политики и хозяйственники. Понимая, что на первом этапе своими усилиями трудно достичь мирового уровня, они, тем не менее, организовали собственные научные и инженерные разработки, а покупка зарубежных лучших образцов, адаптируют их к китайской специфике и создают собственное производство.

Разработки, выполненные в Китае с использованием мирового опыта, обернулись уже сотнями выпускаемых на местных заводах высокоскоростных поездов. Созданы собственные поезда CRH5 и «Гармония CRH380», рассчитанный на конструкционную скорость 380 км/ч и 3 декабря 2010 г. установивший наивысший мировой рекорд скорости 486,1 км/ч.

Китайские специалисты за последнее десятилетие адаптировали и сертифицировали все основные компоненты постоянных технических устройств, отщепа BCM Ухань — Удячук (1069 км) является самым протяженным в мире, где эксплуатируется система управления движением, созданная на основе комплекса ECIS2 и получившая после сертификации в КНР название CTCS2 (China Train Control System — «Китайская система управления движением поездов второго уровня»).

Сегодня КНР не только обладает всеми необходимыми техническими устройствами и технологиями для проектирования, строительства и эксплуатации BCM внутри страны, но и предлагает их на внешнем международном рынке товаров и услуг. Вице-президент корпорации CRRC (ответственное лицо за зам. генерального директора) Тань Юань считает, что в ближайшие годы их техника сможет конкурировать с мировыми аналогами на рынке железных дорог.

Гармония

В завершение конгресса для его участников были организованы техническая экскурсия на новый Южный пекинский вокзал (открыт к Олимпийским играм 1 августа 2008 г.) и поездка на высокоскоростном поезде «Гармония CRH3» по BCM в город Тяньцзинь. В пути по 120-километровой магистрали, рассчитанной на максимальную скорость 350 км/ч, занимает 30 мин.

Стоимость проезда в одну сторону на поезде составляет 69 юаней (около 345 руб.), во втором — 85 юаней. Билет в оба конца боится обойтись в 99 юаней.

Билет уменьшается при покупке билета на всю дорогу за один раз, а также при смертью и групповыми поездках.

Линия была пущена в эксплуатацию 1 августа 2008 г., но пока расписание поездов на функционировавшей до открытия BCM железной дороге существенным образом не изменилось. Время в пути около 2 ч, билет в оба конца стоит 100 юаней в первом классе и 110 юаней во втором. По словам сотрудников транспортного бюро, в настоящее время расписание бывает иногда очень много поездов.

Фирма CRRC, организованная с 1998 года, имеет в своем составе около 2000 человек, из которых 1500 — это специалисты в области электроники, математики, информатики, механики, материаловедения и других областях. Фирма имеет контракты на поставку оборудования для железных дорог более чем в 30 странах мира.
пассажиров со старых поездов на высокоскоростные.

За последние 3 года в Китае одновременно с ВСМ были построены заново или кардинально реконструированы более 15 пассажирских станций с вокзалами комплексами. Крупнейшие из них — Южный вокзал в Пекине (24 приемно-отправочных пути, площадь — 322 тыс. кв. м), вокзал в Тяньцзине (18 путей, 186 тыс. кв. м) и совмещенный единый комплекс вокзал-аэропорт в Шанхае, включающий в себя станцию ВСМ на 30 путей (площадь вокзала — 422 тыс. кв. м) и международный аэропорт Хуанюо. Построены новые вокзалы в Ухане (20 путей), Южный вокзал в Чуаньцоу (28 путей), вокзал в Нанкине (14 путей) и в других городах.

Вокзалы спроектированы с учетом последних требований и достижений в области обслуживания больших пассажиропотоков, с применением технологий, обеспечивающих удобство пассажиров с ограниченными физическими возможностями (лифты, пандусы, эскалаторы, рельефные указатели на полу для слабовидящих). Введен комплекс автоматической продажи и проверки билетов перед выходом на посадку. На вокзалах в КНР посещение проводится досмотр пассажиров и проверка багажа сканерами.

Наша поездка проходила на поездах «Гармония CRH3» китайского производства, его прототип — германский поезд ICE3 (Velaro C). Являясь ближним по конструкции к поезду Velaro RUS («Сапсан»), китайский поезд отличается большей вместимостью салонов кают-компаний второго класса, поскольку в ряд располагаются пять кресел (по схеме 3+2), а не четыре, как в «Сапсане» (замечу, что кресла в китайском поезде довольно узковаты).

В пути следования руководители Министерства железных дорог КНР сопровождали группу участников конгресса, любезно организовали для нас посещение кабины машиниста. Во время посещения поездка поезд курсировал со максимальной скоростью 346—347 км/ч и точно по расписанию прибыл в Тяньцзинь.

Перед выбором

Конгресс в Пекине, превратившийся в бенефис китайских ВСМ (надо отдать должное руководителям Министерства железных дорог КНР, которые приложили для этого немалые усилия), ясно обозначил вступление высокоскоростного железнодорожного транспорта в новую фазу. Поезда ВСМ превратились в массовый транспорт, которым пользуются миллионы жителей разных регионов земного шара.

Вместе с тем этот конгресс, и успехи КНР в освоении нового вида транспорта показали, что подлинный прогресс возможен при комплексном подходе, когда приобщение к передовым, пустя и приобретенным за рубежом технологиям сочетается с проведением собственных научных исследований и инженерных поисковых работ. Безусловно, для небольшой страны возможен закупка под ключ всего пакета технических устройств и технологий для линии ВСМ и подвижного состава для нее (хотя Республика Корея своим опытом опровергает этот тезис). Но для страны, планирующей создание сети ВСМ, — это путь технического и технико-транспортного тунаха.

Россия в настоящее время как раз находится на исторической развилке, перед выбором, стать ли ей державой, приобщенной к высокоскоростному железнодорожному транспорту или быть страной отвечающих технологий, ни способной воспроизвести даже «Сапсан» — поезд, идеология которого была разработана в конце 80-х гг. прошлого века и который сегодня уже не является образцом самой передовой техники по мировым меркам.

Литература
3. Доклад вице-президента АН КНР Бай Чунь-ли на Конгрессе по высокоскоростному железнодорожному транспорту в Пекине. 9 декабря 2010 г., Пекин. (Запись автора.)